Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.970
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612392

RESUMO

The glycocalyx is a proteoglycan-glycoprotein structure lining the luminal surface of the vascular endothelium and is susceptible to damage due to blast overpressure (BOP) exposure. The glycocalyx is essential in maintaining the structural and functional integrity of the vasculature and regulation of cerebral blood flow (CBF). Assessment of alterations in the density of the glycocalyx; its components (heparan sulphate proteoglycan (HSPG/syndecan-2), heparan sulphate (HS), and chondroitin sulphate (CS)); CBF; and the effect of hypercapnia on CBF was conducted at 2-3 h, 1, 3, 14, and 28 days after a high-intensity (18.9 PSI/131 kPa peak pressure, 10.95 ms duration, and 70.26 PSI·ms/484.42 kPa·ms impulse) BOP exposure in rats. A significant reduction in the density of the glycocalyx was observed 2-3 h, 1-, and 3 days after the blast exposure. The glycocalyx recovered by 28 days after exposure and was associated with an increase in HS (14 and 28 days) and in HSPG/syndecan-2 and CS (28 days) in the frontal cortex. In separate experiments, we observed significant decreases in CBF and a diminished response to hypercapnia at all time points with some recovery at 3 days. Given the role of the glycocalyx in regulating physiological function of the cerebral vasculature, damage to the glycocalyx after BOP exposure may result in the onset of pathogenesis and progression of cerebrovascular dysfunction leading to neuropathology.


Assuntos
Proteoglicanas de Heparan Sulfato , Sindecana-2 , Animais , Ratos , Glicocálix , Hipercapnia , Circulação Cerebrovascular , Heparitina Sulfato , Sulfatos de Condroitina
2.
PLoS Pathog ; 20(3): e1011879, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437239

RESUMO

Placental accumulation of Plasmodium falciparum infected erythrocytes results in maternal anemia, low birth weight, and pregnancy loss. The parasite protein VAR2CSA facilitates the accumulation of infected erythrocytes in the placenta through interaction with the host receptor chondroitin sulfate A (CSA). Antibodies that prevent the VAR2CSA-CSA interaction correlate with protection from placental malaria, and VAR2CSA is a high-priority placental malaria vaccine antigen. Here, structure-guided design leveraging the full-length structures of VAR2CSA produced a stable immunogen that retains the critical conserved functional elements of VAR2CSA. The design expressed with a six-fold greater yield than the full-length protein and elicited antibodies that prevent adhesion of infected erythrocytes to CSA. The reduced size and adaptability of the designed immunogen enable efficient production of multiple variants of VAR2CSA for use in a cocktail vaccination strategy to increase the breadth of protection. These designs form strong foundations for the development of potent broadly protective placental malaria vaccines.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Humanos , Gravidez , Feminino , Placenta/metabolismo , Malária Falciparum/parasitologia , Anticorpos Antiprotozoários , Plasmodium falciparum/metabolismo , Antígenos de Protozoários , Sulfatos de Condroitina/metabolismo , Eritrócitos/parasitologia
3.
Int J Biol Macromol ; 265(Pt 1): 130709, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462120

RESUMO

Versatile nanoplatform equipped with chemo-photodynamic therapeutic attributes play an important role in improving the effectiveness of tumor treatments. Herein, we developed multifunctional nanoparticles based on chondroitin sulfate A (CSA) for the targeted delivery of chlorin e6 (Ce6) and doxorubicin (DOX), in a combined chemo-photodynamic therapy against triple-negative breast cancer. CSA was chosen for its hydrophilic properties and its affinity to CD44 receptor-overexpressed tumor cells. The CSA-ss-Ce6 (CSSC) conjugate was synthesized utilizing a disulfide linker. Subsequently, DOX-loaded CSSC (CSSC-D) nanoparticles were fabricated, showcasing a nearly spherical shape with an average particle size of 267 nm. In the CSSC-D nanoparticles, the chemically attached Ce6 constituted 1.53 %, while the physically encapsulated DOX accounted for 8.11 %. Both CSSC-D and CSSC nanoparticles demonstrated a reduction-sensitive release of DOX or Ce6 in vitro. Under near-infrared (NIR) laser irradiation, CSSC-D showed the enhanced generation of reactive oxygen species (ROS), improving cytotoxic effects against triple-negative breast cancer 4T1 and MDA-MB-231 cells. Remarkably, the CSSC-D with NIR exhibited the most potent tumor growth inhibition in comparison to other groups in the 4T1-bearing Balb/c mice model. Overall, this CSSC-D nanoplatform shows significant promise as a powerful tool for a synergetic approach in chemo-photodynamic therapy in triple-negative breast cancer.


Assuntos
Nanopartículas , Fotoquimioterapia , Porfirinas , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Sulfatos de Condroitina , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Doxorrubicina/farmacologia , Doxorrubicina/química , Nanopartículas/química , Porfirinas/farmacologia , Porfirinas/química , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química
4.
Carbohydr Polym ; 334: 121972, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553198

RESUMO

Chronic wounds with bacterial infection present formidable clinical challenges. In this study, a versatile hydrogel dressing with antibacterial and angiogenic activity composite of silk fibroin (SF), chondroitin sulfate (CS), and graphene oxide quantum dots (GOQDs) is fabricated. GOQDs@SF/CS (GSC) hydrogel is rapidly formed through the enzyme catalytic action of horseradish peroxidase. With the incorporation of GOQDs both gelation speed and mechanical properties have been enhanced, and the photothermal characteristics of GOQDs in GSC hydrogel enabled bacterial killing through photothermal treatment (PTT) at ∼51 °C. In vitro studies show that the GSC hydrogels demonstrate excellent antibacterial performance and induce type H vessel differentiation of endothelial cells via the activated ERK1/2 signaling pathway and upregulated SLIT3 expression. In vivo results show that the hydrogel significantly promotes type H vessels formation, which is related to the collagen deposition, epithelialization and, ultimately, accelerates the regeneration of infected skin defects. Collectively, this multifunctional GSC hydrogel, with dual action of antibacterial efficacy and angiogenesis promotion, emerges as an innovative skin dressing with the potential for advancing in infected wound healing.


Assuntos
Fibroínas , Grafite , Pontos Quânticos , Fibroínas/farmacologia , Sulfatos de Condroitina/farmacologia , Hidrogéis/farmacologia , Células Endoteliais , Cicatrização , Antibacterianos/farmacologia
5.
J Mater Chem B ; 12(14): 3417-3435, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38525920

RESUMO

Due to the increasing aging population and the advancements in transcatheter aortic valve replacement (TAVR), the use of bioprosthetic heart valves (BHVs) in patients diagnosed with valvular disease has increased substantially. Commercially available glutaraldehyde (GA) cross-linked biological valves suffer from reduced durability due to a combination of factors, including the high cell toxicity of GA, subacute thrombus, inflammation and calcification. In this study, oxidized chondroitin sulfate (OCS), a natural polysaccharide derivative, was used to replace GA to cross-link decellularized bovine pericardium (DBP), carrying out the first crosslinking of DBP to obtain OCS-BP. Subsequently, the zwitterion radical copolymerization system was introduced in situ to perform double cross-linking to obtain double crosslinked BHVs with biomimetic modification (P(APM/MPC)-OCS-BP). P(APM/MPC)-OCS-BP presented enhanced mechanical properties, collagen stability and enzymatic degradation resistance due to double crosslinking. The ex vivo AV-shunt assay and coagulation factors test suggested that P(APM/MPC)-OCS-BP exhibited excellent anticoagulant and antithrombotic properties due to the introduction of P(APM/MPC). P(APM/MPC)-OCS-BP also showed good HUVEC-cytocompatibility due to the substantial reduction of its residual aldehyde group. The subcutaneous implantation also demonstrated that P(APM/MPC)-OCS-BP showed a weak inflammatory response due to the anti-inflammatory effect of OCS. Finally, in vivo and in vitro results revealed that P(APM/MPC)-OCS-BP exhibited an excellent anti-calcification property. In a word, this simple cooperative crosslinking strategy provides a novel solution to obtain BHVs with good mechanical properties, and HUVEC-cytocompatibility, anti-coagulation, anti-inflammatory and anti-calcification properties. It might be a promising alternative to GA-fixed BP and exhibited good prospects in clinical applications.


Assuntos
Calcinose , Próteses Valvulares Cardíacas , Humanos , Animais , Bovinos , Idoso , Sulfatos de Condroitina/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Valvas Cardíacas , Glutaral , Anti-Inflamatórios/farmacologia , Pericárdio
6.
Nat Commun ; 15(1): 1877, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461182

RESUMO

Axonal growth cones mediate axonal guidance and growth regulation. We show that migrating neurons in mice possess a growth cone at the tip of their leading process, similar to that of axons, in terms of the cytoskeletal dynamics and functional responsivity through protein tyrosine phosphatase receptor type sigma (PTPσ). Migrating-neuron growth cones respond to chondroitin sulfate (CS) through PTPσ and collapse, which leads to inhibition of neuronal migration. In the presence of CS, the growth cones can revert to their extended morphology when their leading filopodia interact with heparan sulfate (HS), thus re-enabling neuronal migration. Implantation of an HS-containing biomaterial in the CS-rich injured cortex promotes the extension of the growth cone and improve the migration and regeneration of neurons, thereby enabling functional recovery. Thus, the growth cone of migrating neurons is responsive to extracellular environments and acts as a primary regulator of neuronal migration.


Assuntos
Cones de Crescimento , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores , Camundongos , Animais , Cones de Crescimento/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Neurogênese , Axônios/metabolismo , Sulfatos de Condroitina/metabolismo , Encéfalo/metabolismo , Células Cultivadas
7.
Glycobiology ; 34(5)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38438145

RESUMO

This review delves into the roles of glycosaminoglycans (GAGs), integral components of proteoglycans, in tooth development. Proteoglycans consist of a core protein linked to GAG chains, comprised of repeating disaccharide units. GAGs are classified into several types, such as hyaluronic acid, heparan sulfate, chondroitin sulfate, dermatan sulfate, and keratan sulfate. Functioning as critical macromolecular components within the dental basement membrane, these GAGs facilitate cell adhesion and aggregation, and play key roles in regulating cell proliferation and differentiation, thereby significantly influencing tooth morphogenesis. Notably, our recent research has identified the hyaluronan-degrading enzyme Transmembrane protein 2 (Tmem2) and we have conducted functional analyses using mouse models. These studies have unveiled the essential role of Tmem2-mediated hyaluronan degradation and its involvement in hyaluronan-mediated cell adhesion during tooth formation. This review provides a comprehensive summary of the current understanding of GAG functions in tooth development, integrating insights from recent research, and discusses future directions in this field.


Assuntos
Glicosaminoglicanos , Ácido Hialurônico , Camundongos , Animais , Glicosaminoglicanos/metabolismo , Proteoglicanas/metabolismo , Sulfato de Ceratano/metabolismo , Sulfatos de Condroitina/metabolismo , Heparitina Sulfato/metabolismo , Odontogênese , Dermatan Sulfato
8.
Cancer Res Commun ; 4(4): 970-985, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517140

RESUMO

Immunotherapies for cancers of epithelial origin have limited efficacy, and a growing body of evidence links the composition of extracellular matrix (ECM) with the likelihood of a favorable response to treatment. The ECM may be considered an immunologic barrier, restricting the localization of cytotoxic immune cells to stromal areas and inhibiting their contact with tumor cells. Identifying ECM components of this immunologic barrier could provide targets that whether degraded in situ may support antitumor immunity and improve immunotherapy response. Using a library of primary triple-negative breast cancer tissues, we correlated CD8+ T-cell tumor contact with ECM composition and identified a proteoglycan, versican (VCAN), as a putative member of the immunologic barrier. Our analysis reveals that CD8+ T-cell contact with tumor associates with the location of VCAN expression, the specific glycovariant of VCAN [defined through the pattern of posttranslational attachments of glycosaminoglycans (GAG)], and the cell types that produce the variant. In functional studies, the isomers of chondroitin sulfate presented on VCAN have opposing roles being either supportive or inhibiting of T-cell trafficking, and removal of the GAGs ameliorates these effects on T-cell trafficking. Overall, we conclude that VCAN can either support or inhibit T-cell trafficking within the tumor microenvironment depending on the pattern of GAGs present, and that VCAN is a major component of the ECM immunologic barrier that defines the type of response to immunotherapy. SIGNIFICANCE: The response to immunotherapy has been poor toward solid tumors despite immune cells infiltrating into the tumor. The ECM has been associated with impacting T-cell infiltration toward the tumor and in this article we have identified VCAN and its structural modification, chondroitin sulfate as having a key role in T-cell invasion.


Assuntos
Neoplasias , Versicanas , Humanos , Linfócitos T CD8-Positivos/metabolismo , Sulfatos de Condroitina , Fenótipo , Microambiente Tumoral , Versicanas/química , Animais
9.
Int J Biol Macromol ; 261(Pt 2): 129862, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309409

RESUMO

Osteoarthritis is a long-term degenerative condition of the joints that is characterized by the breakdown of cartilage and inflammation of the synovial membrane. The presence of an inflammatory microenvironment and the degradation of the extracellular matrix produced by chondrocytes leads to the aggravation of cartilage injury, hindering the treatment of osteoarthritis. A promising approach to address this issue is to apply a combined strategy that is sensitive to the specific conditions in osteoarthritic joints and possesses properties that can reduce inflammation and promote cartilage healing. Here, inspired by the structure of chocolate-covered peanuts, we developed an injectable, environment-responsive bilayer hydrogel microsphere using microfluidics technology. The microsphere applied chondroitin sulfate methacryloyl (ChsMA) as its core and was coated with a methacryloyl gelatin (GelMA) shell that was loaded with celecoxib (CLX) liposomes (ChsMA+CLX@Lipo@GelMA). CLX was released from the liposomes when the GelMA shell rapidly degraded in response to the osteoarthritic microenvironment and suppressed the generation of inflammatory agents, demonstrating a beneficial impact of the outer shell in reducing inflammation. While the inner methacryloyl microsphere core degraded, chondroitin sulfate was released to promote chondrocyte anabolism and facilitate cartilage repair. Thus, the synthesized bilayer hydrogel microspheres hold great potential for treating osteoarthritis.


Assuntos
Hidrogéis , Osteoartrite , Humanos , Hidrogéis/química , Gelatina/química , Sulfatos de Condroitina , Microesferas , Lipossomos , Osteoartrite/tratamento farmacológico , Inflamação
10.
J Biol Chem ; 300(3): 105706, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309500

RESUMO

Glioma stem cell/glioma-initiating cell (GIC) and their niches are considered responsible for the therapeutic resistance and recurrence of malignant glioma. To clarify the molecular mechanisms of GIC maintenance/differentiation, we performed a unique integrated proteogenomics utilizing GIC clones established from patient tumors having the potential to develop glioblastoma. After the integration and extraction of the transcriptomics/proteomics data, we found that chondroitin sulfate proteoglycan 4 (CSPG4) and its glycobiosynthetic enzymes were significantly upregulated in GICs. Glyco-quantitative PCR array revealed that chondroitin sulfate (CS) biosynthetic enzymes, such as xylosyltransferase 1 (XYLT1) and carbohydrate sulfotransferase 11, were significantly downregulated during serum-induced GIC differentiation. Simultaneously, the CS modification on CSPG4 was characteristically decreased during the differentiation and also downregulated by XYLT1 knockdown. Notably, the CS degradation on CSPG4 by ChondroitinaseABC treatment dramatically induced GIC differentiation, which was significantly inhibited by the addition of CS. GIC growth and differentiation ability were significantly suppressed by CSPG4 knockdown, suggesting that CS-CSPG4 is an important factor in GIC maintenance/differentiation. To understand the molecular function of CS-CSPG4, we analyzed its associating proteins in GICs and found that CSPG4, but not CS-CSPG4, interacts with integrin αV during GIC differentiation. This event sequentially upregulates integrin-extracellular signal-regulated kinase signaling, which can be inhibited by cyclic-RGD (Arg-Gly-Asp) integrin αV inhibitor. These results indicate that CS-CSPG4 regulates the GIC microenvironment for GIC maintenance/differentiation via the CS moiety, which controls integrin signaling. This study demonstrates a novel function of CS on CSPG4 as a niche factor, so-called "glyco-niche" for GICs, and suggests that CS-CSPG4 could be a potential target for malignant glioma.


Assuntos
Proteoglicanas de Sulfatos de Condroitina , Sulfatos de Condroitina , Glioma , Proteínas de Membrana , Humanos , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/metabolismo , Glioma/metabolismo , Glioma/patologia , Integrina alfaV , Proteínas de Membrana/metabolismo , Microambiente Tumoral
11.
Adv Sci (Weinh) ; 11(14): e2308027, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308137

RESUMO

Hepatocellular carcinoma (HCC) is a form of malignancy with limited curative options available. To improve therapeutic outcomes, it is imperative to develop novel, potent therapeutic modalities. Ketoconazole (KET) has shown excellent therapeutic efficacy against HCC by eliciting apoptosis. However, its limited water solubility hampers its application in clinical treatment. Herein, a mitochondria-targeted chemo-photodynamic nanoplatform, CS@KET/P780 NPs, is designed using a nanoprecipitation strategy by integrating a newly synthesized mitochondria-targeted photosensitizer (P780) and chemotherapeutic agent KET coated with chondroitin sulfate (CS) to amplify HCC therapy. In this nanoplatform, CS confers tumor-targeted and subsequently pH-responsive drug delivery behavior by binding to glycoprotein CD44, leading to the release of P780 and KET. Mechanistically, following laser irradiation, P780 targets and destroys mitochondrial integrity, thus inducing apoptosis through the enhancement of reactive oxygen species (ROS) buildup. Meanwhile, KET-induced apoptosis synergistically enhances the anticancer effect of P780. In addition, tumor cells undergoing apoptosis can trigger immunogenic cell death (ICD) and a longer-term antitumor response by releasing tumor-associated antigens (TAAs) and damage-associated molecular patterns (DAMPs), which together contribute to improved therapeutic outcomes in HCC. Taken together, CS@KET/P780 NPs improve the bioavailability of KET and exhibit excellent therapeutic efficacy against HCC by exerting chemophototherapy and antitumor immunity.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Cetoconazol , Sulfatos de Condroitina , Neoplasias Hepáticas/terapia , Imunoterapia
12.
Int J Biol Macromol ; 262(Pt 1): 129969, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325688

RESUMO

Chondroitin sulfate (CS), dermatan sulfate (DS), and CS/DS hybrid chains are natural complex glycosaminoglycans with high structural diversity and widely distributed in marine organisms, such as fish, shrimp, starfish, and sea cucumber. Numerous CS, DS, and CS/DS hybrid chains with various structures and activities have been obtained from marine animals and have received extensive attention. However, only a few of these hybrid chains have been well-characterized and commercially developed. This review presents information on the extraction, purification, structural characterization, biological activities, potential action mechanisms, and structure-activity relationships of marine CS, DS, and CS/DS hybrid chains. We also discuss the challenges and perspectives in the research of CS, DS, and CS/DS hybrid chains. This review may provide a useful reference for the further investigation, development, and application of CS, DS, and CS/DS hybrid chains in the fields of functional foods and therapeutic agents.


Assuntos
Sulfatos de Condroitina , Dermatan Sulfato , Animais , Sulfatos de Condroitina/farmacologia , Sulfatos de Condroitina/química , Dermatan Sulfato/química , Alimento Funcional , Glicosaminoglicanos/química
13.
Int J Biol Macromol ; 262(Pt 1): 129671, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423906

RESUMO

Tumor growth and metastasis heavily rely on angiogenesis, crucial for solid tumor development. Inhibiting angiogenesis associated with tumors emerges as a potent therapeutic approach. Our previous work synthesized the chondroitin sulfate-modified antiangiogenic peptide CS-ES2-AF (CS-EA), which exhibited better antiangiogenic activity, longer half-life, and more robust targeting. In this work, we further evaluated the stability in vitro, cellular uptake mechanism, cell apoptosis mechanism, antitumor activity in vivo, and safety of CS-EA. The stability of CS-EA was consistently superior to that of EA at different temperatures and in different pH ranges. Furthermore, CS-EA mainly entered EAhy926 cells through the clathrin-mediated endocytosis pathway. CS-EA inhibited endothelial cell proliferation, and induced cell apoptosis through downregulating the Bcl-2, reducing mitochondria membrane potential, upregulating cytochrome c, Caspase 3, and reactive oxygen species levels. CS-EA showed better antitumor activity in the B16 xenografted tumor model, with a tumor inhibition rate 1.92 times higher than EA. Simultaneously, it was observed that CS-EA did not cause any harmful effects on the vital organs of the mice. These findings indicate that CS-EA holds significant promise for the treatment of tumors.


Assuntos
Sulfatos de Condroitina , Neoplasias , Animais , Camundongos , Sulfatos de Condroitina/farmacologia , Sulfatos de Condroitina/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Apoptose , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Linhagem Celular Tumoral
14.
EMBO Rep ; 25(3): 1310-1325, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38321165

RESUMO

Cellular attachment of viruses determines their cell tropism and species specificity. For entry, vaccinia, the prototypic poxvirus, relies on four binding proteins and an eleven-protein entry fusion complex. The contribution of the individual virus binding proteins to virion binding orientation and membrane fusion is unclear. Here, we show that virus binding proteins guide side-on virion binding and promote curvature of the host membrane towards the virus fusion machinery to facilitate fusion. Using a membrane-bleb model system together with super-resolution and electron microscopy we find that side-bound vaccinia virions induce membrane invagination in the presence of low pH. Repression or deletion of individual binding proteins reveals that three of four contribute to binding orientation, amongst which the chondroitin sulfate binding protein, D8, is required for host membrane bending. Consistent with low-pH dependent macropinocytic entry of vaccinia, loss of D8 prevents virion-associated macropinosome membrane bending, disrupts fusion pore formation and infection. Our results show that viral binding proteins are active participants in successful virus membrane fusion and illustrate the importance of virus protein architecture for successful infection.


Assuntos
Poxviridae , Vaccinia , Humanos , Sulfatos de Condroitina , Vírus Vaccinia/metabolismo , Poxviridae/metabolismo , Proteínas Virais/metabolismo , Fusão de Membrana , Proteínas de Transporte
15.
J Food Sci ; 89(3): 1791-1803, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38317402

RESUMO

Bone broth has recently gained worldwide recognition as a superfood that supplements several nutrients lacking in modern human diets; however, little is known of its efficacy on osteoporosis. Therefore, we aimed to identify the components of chicken-vegetable bone broth (CVBB) that are associated with osteoporosis prevention and verified the efficacy of these components using in vivo studies. In biochemical and cell biological experiments, CVBB was fractionated using ion exchange chromatography (IEC), and the effect of each IEC fraction on osteoclast differentiation was evaluated based on tartrate-resistant acid phosphatase (TRAP) activity, TRAP staining, and quantitative polymerase chain reaction analysis using mouse macrophage-like cells (RAW264 cell). In animal experiments, an ovariectomized (OVX) rat model was generated, followed by whole bone broth (OVX/CVBB) or IEC fraction (OVX/CVBB-Ext) administration and bone structural parameter characterization of OVX rat tibia based on micro-CT. Four CVBB fractions were obtained using IEC, and the fraction containing both hyaluronan and chondroitin sulfate (CVBB-Ext) led to the maximum inhibition of RAW264 cell differentiation. CVBB-Ext downregulated the expression of osteoclast differentiation marker genes. In animal experiments, the OVX group showed a clear decrease in bone density compared to that in the Sham operation group. The OVX/CVBB and OVX/CVBB-Ext groups showed increased bone mineral density and bone volume/tissue volume values compared to those in the OVX/control group. These results suggested that CVBB and CVBB-Ext slowed osteoporosis progression. Therefore, we conclude that hyaluronan and chondroitin sulfate in CVBB are key substances that impede osteoporosis progression. PRACTICAL APPLICATION: This study provides practical information on the effects of bone broth ingredients on osteoporosis to expand the current knowledge on the efficacy of bone broth, which is a widely consumed food. These results may help in the future development of bone broth as a dietary supplement for managing osteoporosis.


Assuntos
Osteoporose , Verduras , Camundongos , Humanos , Ratos , Animais , Sulfatos de Condroitina/farmacologia , Ácido Hialurônico/farmacologia , Galinhas , Osteoporose/metabolismo , Densidade Óssea
16.
Microbiome ; 12(1): 41, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38419055

RESUMO

Chondroitin sulfate (CS) has widely been used as a symptomatic slow-acting drug or a dietary supplement for the treatment and prevention of osteoarthritis. However, CS could not be absorbed after oral intake due to its polyanionic nature and large molecular weight. Gut microbiota has recently been proposed to play a pivotal role in the metabolism of drugs and nutrients. Nonetheless, how CS is degraded by the human gut microbiota has not been fully characterized. In the present study, we demonstrated that each human gut microbiota was characterized with a unique capability for CS degradation. Degradation and fermentation of CS by the human gut microbiota produced significant amounts of unsaturated CS oligosaccharides (CSOSs) and short-chain fatty acids. To uncover which microbes were responsible for CS degradation, we isolated a total of 586 bacterial strains with a potential CS-degrading capability from 23 human fecal samples. Bacteroides salyersiae was a potent species for CS degradation in the human gut microbiota and produced the highest amount of CSOSs as compared to other well-recognized CS-degraders, including Bacteroides finegoldii, Bacteroides thetaiotaomicron, Bacteroides xylanisolvens, and Bacteroides ovatus. Genomic analysis suggested that B. salyersiae was armed with multiple carbohydrate-active enzymes that could potentially degrade CS into CSOSs. By using a spent medium assay, we further demonstrated that the unsaturated tetrasaccharide (udp4) produced by the primary degrader B. salyersiae could serve as a "public goods" molecule for the growth of Bacteroides stercoris, a secondary CS-degrader that was proficient at fermenting CSOSs but not CS. Taken together, our study provides insights into the metabolism of CS by the human gut microbiota, which has promising implications for the development of medical and nutritional therapies for osteoarthritis. Video Abstract.


Assuntos
Bacteroides , Microbioma Gastrointestinal , Osteoartrite , Humanos , Sulfatos de Condroitina/metabolismo , Oligossacarídeos/metabolismo
17.
Signal Transduct Target Ther ; 9(1): 39, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355690

RESUMO

Immunostaining in lungs of patients who died with COVID-19 infection showed increased intensity and distribution of chondroitin sulfate and decline in N-acetylgalactostamine-4-sulfatase (Arylsulfatase B; ARSB). To explain these findings, human small airway epithelial cells were exposed to the SARS-CoV-2 spike protein receptor binding domain (SPRBD) and transcriptional mechanisms were investigated. Phospho-p38 MAPK and phospho-SMAD3 increased following exposure to the SPRBD, and their inhibition suppressed the promoter activation of the carbohydrate sulfotransferases CHST15 and CHST11, which contributed to chondroitin sulfate biosynthesis. Decline in ARSB was mediated by phospho-38 MAPK-induced N-terminal Rb phosphorylation and an associated increase in Rb-E2F1 binding and decline in E2F1 binding to the ARSB promoter. The increases in chondroitin sulfotransferases were inhibited when treated with phospho-p38-MAPK inhibitors, SMAD3 (SIS3) inhibitors, as well as antihistamine desloratadine and antibiotic monensin. In the mouse model of carrageenan-induced systemic inflammation, increases in phospho-p38 MAPK and expression of CHST15 and CHST11 and declines in DNA-E2F binding and ARSB expression occurred in the lung, similar to the observed effects in this SPRBD model of COVID-19 infection. Since accumulation of chondroitin sulfates is associated with fibrotic lung conditions and diffuse alveolar damage, increased attention to p38-MAPK inhibition may be beneficial in ameliorating Covid-19 infections.


Assuntos
COVID-19 , N-Acetilgalactosamina-4-Sulfatase , Camundongos , Animais , Humanos , N-Acetilgalactosamina-4-Sulfatase/metabolismo , Sulfatos de Condroitina/farmacologia , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Glicoproteína da Espícula de Coronavírus , 60668 , Enzima de Conversão de Angiotensina 2 , Proteínas Quinases p38 Ativadas por Mitógeno/genética , SARS-CoV-2/metabolismo
18.
ACS Appl Bio Mater ; 7(2): 1271-1289, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38315869

RESUMO

Adipose tissue macrophages (ATMs) are crucial in maintaining a low-grade inflammatory microenvironment in adipose tissues (ATs). Modulating ATM polarization to attenuate inflammation represents a potential strategy for treating obesity with insulin resistance. This study develops a combination therapy of celastrol (CLT) and phenformin (PHE) using chondroitin sulfate-derived micelles. Specifically, CLT-loaded 4-aminophenylboronic acid pinacol ester-modified chondroitin sulfate micelle (CS-PBE/CLT) and chondroitin sulfate-phenformin conjugate micelles (CS-PHE) were synthesized, which were shown to actively target ATs through CD44-mediated pathways. Furthermore, the dual micellar systems significantly reduced inflammation and lipid accumulation via protein quantification and Oil Red O staining. In preliminary in vivo studies, we performed H&E staining, immunohistochemical staining, insulin tolerance test, and glucose tolerance test, and the results showed that the combination therapy using CS-PBE/CLT and CS-PHE micelles significantly reduced the average body weight, white adipose tissue mass, and liver mass of high-fat diet-fed mice while improving their systemic glucose homeostasis. Overall, this combination therapy presents a promising alternative to current treatment options for diet-induced obesity.


Assuntos
Sulfatos de Condroitina , Micelas , Triterpenos Pentacíclicos , Animais , Camundongos , Fenformin/metabolismo , Tecido Adiposo/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Inflamação , Dieta Hiperlipídica/efeitos adversos
19.
PLoS One ; 19(2): e0297803, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359063

RESUMO

Marine glycosaminoglycans (GAG) isolated from different invertebrates, such as molluscs, starfish or jellyfish, have been described as unique molecules with important pharmacological applications. Scarce information is available on GAG extract from Rapana venosa marine snail. The aim of this study was to isolate a GAG extract from R. venosa marine snail and to investigate its physicochemical, antioxidant and antiproliferative properties for further biomedical use. The morphology, chemical and elemental composition of the extract were established as well as the sulfate content and N- to O-sulfation ratio. Fourier transform infrared (FTIR) spectra indicated that GAG extract presented similar structural characteristics to bovine heparan sulfate and chondroitin sulfate. The pattern of extract migration in agarose gel electrophoresis and specific digestion with chondroitinase ABC and heparinase III indicated the presence of a mixture of chondroitin sulfate-type GAG, as main component, and heparan sulfate-type GAG. Free radical scavenging and ferric ion reducing assays showed that GAG extract had high antioxidant activity, which slightly decreased after enzymatic treatment. In vitro MTT and Live/Dead assays showed that GAG extract had the ability to inhibit cell proliferation in human Hep-2 cell cultures, at cytocompatible concentrations in normal NCTC clone L929 fibroblasts. This capacity decreased after enzymatic digestion, in accordance to the antioxidant activity of the products. Tumoral cell migration was also inhibited by GAG extract and its digestion products. Overall, GAG extract from R. venosa marine snail exhibited antioxidant and antiproliferative activities, suggesting its potential use as novel bioactive compound for biomedical applications.


Assuntos
Sulfatos de Condroitina , Glicosaminoglicanos , Animais , Bovinos , Humanos , Glicosaminoglicanos/farmacologia , Antioxidantes/farmacologia , Heparitina Sulfato , Caramujos
20.
Carbohydr Polym ; 330: 121817, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368099

RESUMO

The development of oral film with diverse colors and customized nutrition is in line with the innovation of emerging food. In this study, polychromatic system was formed by regulating the ratio of phycocyanin (PC) to blueberry anthocyanin (BA). Further, chondroitin sulfate (CS) was utilized to achieve color-enhanced and homeostatic effects on PC-BA, and κ-carrageenan (KC) - starch complex was exploited as printing ink to construct oral film system. The color-enhanced effect of CS is mainly related to the complexation of sulfate groups, and the film-forming substrates are combined mainly through hydrogen bonding. In addition, the proportion of KC modulated the gel structure of printing ink, and affected 3D printability and physical properties of oral film. OF II (1.5 % KC content) had a uniform and dense network structure, with the most stable color and the highest BA retention (70.33 %) after 8 d of light exposure. Importantly, OF II had an excellent slow-release effect, and BA release rate was as high as 92.52 %. The optimized components can form polychromatic oral film with controllable color and structure, and provide new insights for the creation of sensory personalized and nutritionally customized food.


Assuntos
Antocianinas , Sulfatos de Condroitina , Carragenina , Ficocianina , Amido , Excipientes , Homeostase , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...